1,464 research outputs found

    Influence of synaptic depression on memory storage capacity

    Full text link
    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing "temperature", which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change

    Respiratory Syncytial Virus (RSV) RNA loads in peripheral blood correlates with disease severity in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory Syncytial Virus (RSV) infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity.</p> <p>Methods</p> <p>Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood.</p> <p>Results</p> <p>RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes.</p> <p>Conclusions</p> <p>RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.</p

    Is the underwater gliding test a valid procedure to estimate the swimmers’ drag?

    Get PDF
    The aim of this study was to develop a structural equation model for underwater gliding distance based on its determinant variables, in order to confirm whether it is an informative test of young swimmers’ hydrodynamic profile. Methods: Twenty-three subjects (twelve boys and eleven girls with a mean age of 13.61 ± 0.83 years old) were evaluated. The following were determined: (i) the underwater gliding distance; (ii) the squat jump performance; (iii) the passive drag; (iv) the passive drag coefficient; (v) the trunk transverse surface area and; (vi) the gliding velocity. Results: The underwater gliding distance was significantly correlated with the squat jump (rs = 0.47; p = 0.038) and with the coefficient of passive drag (rs = -0.55; p < 0.01) but not with passive drag (rs = 0.41; p = 0.09). The overall model explained 45% of the underwater gliding distance (x2/df = 3.138). Conclusion: The underwater gliding distance seems to be more dependent from the squat jump than from the passive drag. Therefore it seems as if the underwater gliding test is not representative of the swimmers’ passive drag or his /her passive drag coefficient

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    Coadministration of Anti-Viral Monoclonal Antibodies With Routine Pediatric Vaccines and Implications for Nirsevimab Use: A White Paper

    Get PDF
    Routine childhood vaccinations are key for the protection of children from a variety of serious and potentially fatal diseases. Current pediatric vaccine schedules mainly cover active vaccines. Active vaccination in infants is a highly effective approach against several infectious diseases; however, thus far, for some important viral pathogens, including respiratory syncytial virus (RSV), vaccine development and license by healthcare authorities have not been accomplished. Nirsevimab is a human-derived, highly potent monoclonal antibody (mAb) with an extended half-life for RSV prophylaxis in all infants. In this manuscript, we consider the potential implications for the introduction of an anti-viral mAb, such as nirsevimab, into the routine pediatric vaccine schedule, as well as considerations for coadministration. Specifically, we present evidence on the general mechanism of action of anti-viral mAbs and experience with palivizumab, the only approved mAb for the prevention of RSV infection in preterm infants, infants with chronic lung disease of prematurity and certain infants with hemodynamically significant heart disease. Palivizumab has been used for over two decades in infants who also receive routine vaccinations without any alerts concerning the safety and efficacy of coadministration. Immunization guidelines (Advisory Committee on Immunization Practices, Joint Committee on Vaccination and Immunization, National Advisory Committee on Immunization, Centers for Disease Control and Prevention, American Academy of Pediatrics, The Association of the Scientific Medical Societies in Germany) support coadministration of palivizumab with routine pediatric vaccines, noting that immunobiologics, such as palivizumab, do not interfere with the immune response to licensed live or inactivated active vaccines. Based on the mechanism of action of the new generation of anti-viral mAbs, such as nirsevimab, which is highly specific targeting viral antigenic sites, it is unlikely that it could interfere with the immune response to other vaccines. Taken together, we anticipate that nirsevimab could be concomitantly administered to infants with routine pediatric vaccines during the same clinic visit

    ERP evidence suggests executive dysfunction in ecstasy polydrug users

    Get PDF
    Background: Deficits in executive functions such as access to semantic/long-term memory have been shown in ecstasy users in previous research. Equally, there have been many reports of equivocal findings in this area. The current study sought to further investigate behavioural and electro-physiological measures of this executive function in ecstasy users. Method: Twenty ecstasy–polydrug users, 20 non-ecstasy–polydrug users and 20 drug-naïve controls were recruited. Participants completed background questionnaires about their drug use, sleep quality, fluid intelligence and mood state. Each individual also completed a semantic retrieval task whilst 64 channel Electroencephalography (EEG) measures were recorded. Results: Analysis of Variance (ANOVA) revealed no between-group differences in behavioural performance on the task. Mixed ANOVA on event-related potential (ERP) components P2, N2 and P3 revealed significant between-group differences in the N2 component. Subsequent exploratory univariate ANOVAs on the N2 component revealed marginally significant between-group differences, generally showing greater negativity at occipito-parietal electrodes in ecstasy users compared to drug-naïve controls. Despite absence of behavioural differences, differences in N2 magnitude are evidence of abnormal executive functioning in ecstasy–polydrug users

    On-board and Ground Visual Pose Estimation Techniques for UAV Control

    Get PDF
    In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter¿s position and using the extracted information to control the UAV

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure
    corecore